TOWARD TRANSPORTATION FUELS WITH ZERO GHG EMISSIONS

Robert H. Williams

Princeton University

Politecnico di Milano Planet 3000 Milan, Italy

12 November 2007

- Air travel grows 4.3 X (2.9 X per capita)

CHALLENGES/OPTIONS FOR LIQUID FUELS

• <u>Challenges</u>: climate change/high oil prices/oil supply insecurity

Alternative options:

- H₂ economy—at best a long-term option
- Biofuels
 - Ethanol (EthOH)
 - Sugar cane EthOH-attractive option but only for tropical regions with adequate rainfall
 - Grain EthOH-marginal C mitigation benefits, adverse impacts on food prices
 - Cellulosic EthOH-good C mitigation benefits but slow in coming
 - · Biodiesel-also based on food biomass, with adverse impacts on food prices

- Coal to liquids (CTL)

- Commercially proven—based on coal gasification + F-T synthesis
- Cost-competitive for crude oil prices of \$55 \$60 a barrel
- · Ultra-low air pollutant emissions at CTL plants
- · F-T liquids would have ultra-low sulfur, aromatics contents
- · F-T liquids can be used in existing transport fuel infrastructures
- But F-T liquids are not helpful in mitigating climate change:
 - GHG emission rate $\sim 2~X$ rate for crude oil-derived products with CO_2 vented
 - GHG emission rate ~ 1 X rate for crude oil-derived products with CCS

URGENCY OF SHIFTING FROM FOOD BIOMASS TO LIGNO-CELLULOSIC BIOMASS

· Potential biomass supplies involve mainly ligno-cellulosic biomass

- Most supplies would be crop/forest residues, municipal solid wastes
- Ligno-cellulosic energy crops (e.g. short rotation woody crops, switchgrass, mixed prairie grasses) can be grown on marginal lands as well as on croplands
- Shift from grain to cellulosic EthOH would help shift biomass supplies off cropland—but transition will be slow:

"Producing cellulosic ethanol is clearly more difficult than we thought in the 1990s." Dan Reicher, former DOE Asst. Secretary for EE/RE (*NYT*, *17 April 2007*)

- Alternative, *potentially faster*, route to ligno-cellulosic biomass: Synthetic diesel/gasoline via gasification + F-T synthesis
 - Route to liquid fuels that can "piggy-back" on F-T liquids from coal (CTL)
 - But this "thermochemical" conversion route has been neglected in biofuels R&D programs in favor of "biochemical" conversion route (*e.g. cellulosic EthOH*)

In this option, photosynthetic carbon storage is increased relative to that realizable with the previous option by complementing storage of photosynthetic CO_2 + coal-derived CO_2 in deep underground formations with soil + root C storage arising from the growing of mixed prairie grasses (*MPGs*) on C-depleted soils.

MAJOR FINDINGS OF TILMAN GROUP'S RESEARCH ON MIXED PRAIRIE GRASSES GROWN ON CARBON-DEPLETED SOILS

- Sustainable grass yield increases monotonically with # of species
- Soil/root C build-up increases monotonically with # of species
- Soil C build-up continues for ~ century or more
- Over 30 y, soil/root C buildup rate can average ~ 0.6 tC per tC in harvested biomass...with 16 species
- Once mixed prairie grasses (*MPGs*) have been established, only modest additional inputs (*e.g., gasifier ash*) are needed with annual harvesting
- Local biodiversity gain vs. net biodiversity loss for monocultures

Source: D. Tilman et al., Science, 314: 1598-1600, 8 December 2006

SCOPE OF ANALYSIS	
 F-T liquids production via solids gasification: Once-through liquid-phase reactor for F-T synthesis Unconverted syngas used to make coproduct electricity in combined cycle 	
 Alternative polygeneration plants sited in S. Illinois: Coal-fueled plant with CO₂ vented (<i>GE entrained-flow quench gasifier</i>) Coal-fueled plant with CCS (<i>GE entrained-flow quench gasifier</i>) Coal/MPG-fueled plant with CCS (<i>GE gasifier for coal; GTI fluidized bed gasifier for biomass</i>) using just enough MPGs to reduce net F-T liquids GHG emissions to zero 	
 Minemouth plants using: High S bituminous coal MPGs grown on lands now growing corn 	
 E & C balances estimated—assigning to electricity the GHG emission rate of coal IGCC w/CCS 	
 For assumed (i) \$100/tC GHG emissions value & (ii) electricity credit = generation cost for coal IGCC w/CCS, economic analysis carried out from perspectives of: Synfuels producer Farmers growing MPGs 	

STATUS OF TECHNOLOGIES

- · Coal gasification technology is commercial
- FTL technology is commercial
- CO₂ capture technologies are commercially ready
- CO₂ EOR technology is commercial
- CO₂ storage in deep saline formations ready for megascale projects

 10-12 "megascale" projects (*alternative geologies*) needed worldwide to prove "gigascale" viability of CO₂ storage—need to get projects underway ASAP
 - CTL/CBTL projects good candidates for such projects (low CO₂ capture cost)
- · Technology status for biomass gasification
 - Large O2-blown gasifiers are not yet commercial
 - Could become commercial by ~ 2015
 - But co-gasification variant of CBTL option is commercially ready...at Buggenum in The Netherlands a commercial coal IGCC plant has been fired routinely with 30% biomass (*weight basis*) since 2006

BAARD ENERGY's OHIO CBTL PROJECT

- 50,000 B/D CBTL plant planned at Wellsville, Ohio targeted start-up: 2011-2012
- Builds on Buggenum experience:
 - 30% biomass co-feed (weight basis) planned
 - CCS planned...CO₂ for EOR (*nearby oil field*) or stored in saline formation
- How "real" is project?
 - Ongoing \$50 x 10⁶ FEED study...to be completed mid-2008
 - Some long-term biomass supply contracts already secured
 - Seeking federal incentives...but intent is to proceed even without
 - Ohio Air Quality Development Authority has authorized raising state tax-exempt bonds for debt financing

EXPLORE CARBON MITIGATION POTENTIAL VIA VARIANTS OF SMP SCENARIO FOR 2050

• Thought Experiment #1:

- Keep transportation energy demand at same level as in SMP Scenario
- Back out 100% of oil for transportation in 2050
- Choose mix of (CBTL with CCS) & (BTL with CO₂ vented) such that 100% of prospective biomass supplies are consumed:
 - Biomass required for CBTL with CCS = 0.93 x (CBTL use)
 - Biomass required for BTL with CO_2 vented = 2.27 x (BTL use)

EXPLORE CARBON MITIGATION POTENTIAL VIA VARIANTS OF SMP SCENARIO FOR 2050

- Thought Experiment #1:
 - Keep transportation energy demand at same level as in SMP Scenario
 - Back out 100% of oil for transportation in 2050
 - Choose mix of (CBTL with CCS) & (BTL with CO_2 vented) such that
 - 100% of prospective biomass supplies are consumed:
 - Biomass required for CBTL with CCS = $0.93 \times (CBTL use)$
 - Biomass required for BTL with CO_2 vented = 2.27 x (BTL use)
 - Thought Experiment #2:
 - Keep transportation energy demand at same level as in SMP Scenario
 - Keep same CBTL/BTL ratio as for Thought Experiment #1
 - Set GHG emission rate for 2050 = emission rate for 2004 (Wedges strategy)

EXPLORE CARBON MITIGATION POTENTIAL VIA VARIANTS OF SMP SCENARIO FOR 2050

• Thought Experiment #1:

- Keep transportation energy demand at same level as in SMP Scenario
- Back out 100% of oil for transportation in 2050
- Choose mix of (CBTL with CCS) & (BTL with CO₂ vented) such that 100% of prospective biomass supplies are consumed:
 - Biomass required for CBTL with CCS = 0.93 x (CBTL use)
 - Biomass required for BTL with CO_2 vented = 2.27 x (BTL use)

• Thought Experiment #2:

- Keep transportation energy demand at same level as in SMP Scenario
- Keep same CBTL/BTL ratio as for Thought Experiment #1
- Set GHG emission rate for 2050 = emission rate for 2004 (*Wedges strategy*)

• Thought Experiment #3:

- 23% lower transportation energy demand in 2050 via improved efficiency (TECH Plus Strategy of IEA, *Energy Technology Perspectives 2006: Scenarios & Strategies to 2050*, Paris, 2006...includes average fuel economies in 2050 of 4.7 & 4.0 liters gasoline equivalent per 100 km for gasoline and diesel LDVs)
- Keep same CBTL/BTL ratio as for Thought Experiments #1 and #2
- Set GHG emission rate for 2050 = emission rate for 2004 (Wedges strategy)

EXTRA SLIDES

E	STIMATING VALUE OF STRATEGY TO FARMER
•	 Consider first coal F-T polygeneration plant with CCS <u>Site</u>: Southern Illinois (<i>coal and corn country</i>) <u>CO₂ storage</u>: 7500 ft underground, Mt. Simon aquifer (<i>33 miles from FTL plant</i>) <u>Feedstock</u>: high-S bituminous coal—minemouth plant @ \$1.2/GJ (<i>HHV</i>) <u>GHG emissions price</u>: \$100/tC Assume electricity sold for same price as for coal IGCC with CCS Estimate levalized ETL production cost & breakayen crude oil price
•	 Next consider coal/MPG F-T polygen plant with just enough MPGs input to reduce net GHG emission rate to zero for FTL & assume: Estimated MPGs yields for lands now growing corn there Same outputs/product prices as for coal-only plant with CCS → determines "willingness" of synfuel producer to pay for MPGs
•	 Huge recent construction cost escalations make absolute capital costs highly uncertain—but: Relative capital costs for alternative configurations are probably about the same as before escalations Willingness to pay for MPGs is likely to be insensitive to absolute capital cost levels
•	Farmer income if MPGs displace corn compared to income from corn?

ECONOMICS OF SHIFTING ILLINOIS CORN TO MPGs FOR MAKING FTL WITH COAL

	_
Assumed carbon price, \$ per tonne of C	100
Assumed MPGs yield, dt/ha/y (1.5 X local hay yield on lower-grade land)	10.4
MPGs price, \$ per dry tonne	
Willingness to pay for MPGs at FTL plant (~ 4.5 X coal price)	96
Logistics costs for MPGs	-38
Income to farmer (\$/tonne)	58
Income to farmer (\$/ha/y) for Bond, Clinton, Madison, and Marion counties	
For sale of grasses to FTL plant	567
Corn returns (<i>acreages</i> , <i>yields</i> = 2001-2004 averages, 2007 farm prices)	601
Farmer's income from growing MPGs ~ income from growing	corn
Corn data from Chad Hellwinckel & Daniel de la Ugarte, U. of Tennessee,	

private communication, April 2007

ECONOMICS OF SHIFTING CORN TO MPGs FOR MAKING FTL—IF SOIL/ROOT C CREDIT = 0

100		
10.4		
MPGs price, \$ per dry tonne		
67		
-38		
29		
Income to farmer (\$/ha/y) for Bond, Clinton, Madison, and Marion counties		
279		
601		

Farmer's income would fall by 1/2 without credit for soil/root C storage

Corn data from Chad Hellwinckel & Daniel de la Ugarte, U. of Tennessee, private communication, April 2007

ECONOMICS OF SHIFTING CORN TO MPGs FOR MAKING FTL—IF SOIL/ROOT C CREDIT = 0

Assumed carbon price, \$ per tonne of C	100	
Assumed MPGs yield, dt/ha/y (1.5 X local hay yield on lower-grade land)	10.4	
MPGs price, \$ per dry tonne		
Willingness to pay for MPGs at FTL plant (3.1 X coal price)	67	
Cost of harvesting, grinding, storing MPGs	-38	
Income to farmer (\$/tonne)	29	
Income to farmer (\$/ha/y) for Bond, Clinton, Madison, and Marion counties		
For sale of grasses to FTL plant	279	
Corn returns (<i>acreages</i> , <i>yields</i> = 2001-2004 averages, 2007 farm prices)	601	

But there are likely to be alternative strategies whereby CBTL with CCS option would be competitive at these delivered biomass prices.

Corn data from Chad Hellwinckel & Daniel de la Ugarte, U. of Tennessee, private communication, April 2007

