Stato di Qualità delle Comunità Biologiche del Fiume Lambro

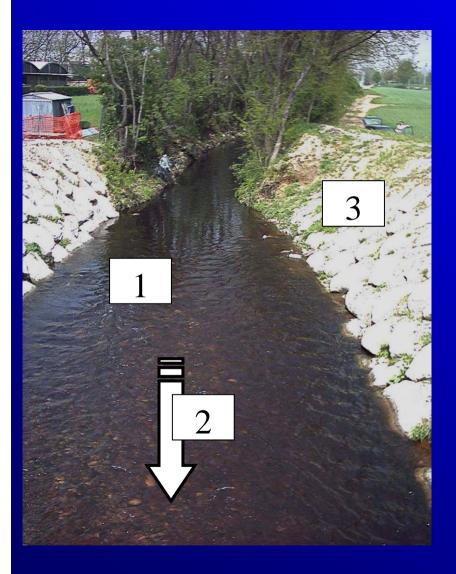
Valeria Mezzanotte Sergio Canobbio Laura Sartori Riccardo Cabrini

Dipartimento di Scienze dell'Ambiente e del Territorio

Università degli Studi di Milano-Bicocca

Comunità Biologiche – Raccolta Dati

L'ECOSISTEMA è l'insieme degli organismi viventi di una data area, dell'ambiente fisico che li circonda e delle relazioni tra queste componenti.



Variabili Ambientali (ambiente fisico caratterizzante, nicchia ecologica)

Biodiversità (dai batteri, alle piante, agli animali superiori)

Relazioni (ruolo trofico, rapporto con energia e materia...)

Variabili Ambientali

Qualità biologica:

- (1) Qualità dell'acqua
- (2) Qualità dell'habitat idraulico
- (3) Qualità dell'habitat morfologico

Perdita di biodiversità:

- (1) Inquinamento
- (2) Alterazioni del regime idraulico
 - (3) Banalizzazione morfologica

Comunità Biologiche

Quattro componenti individuate dalla Direttiva Quadro sulle Acque (WFD) 2000/60

Diatomee

Macrofite

Indici di Qualità

Invertebrati

Indici di Qualità Si valutano differenti *METRICHE:*

Quanti e quali gruppi tassonomici

Quale densità di individui e/o di biomassa

Le abbondanze relative tra diversi gruppi tassonomici o funzionali

La sensibilità ad alterazioni specifiche (esempio: assenza di OD)

Sviluppo di tratti morfologici differenti

ECC... ECC...

Indici di Qualità

Dati Storici: Indice Biotico Esteso

Utilizzato nell'ultimo decennio in tutte le stazioni di monitoraggio della rete istituzionale (ARPA)

Valuta le comunità di INVERTEBRATI

Si basa su DUE metriche piuttosto semplici:

- Numero di gruppi tassonomici rinvenuti (generi o famiglie)
 - Sensibilità alla concentrazione di OD

Sostituito dal 2009 con un nuovo protocollo di campionamento *multihabitat proporzionale*

IBE: Calcolo dell'Indice

CLASSI DI QUALITA'	VALORE DI IBE	GIUDIZIO DI QUALITA'	COLORE RELATIVO ALLA CLASSE DI QUALITA'
Classe I	10-11-12+	Ambiente non inquinato o comunque non alterato in modo sensibile	
Classe II	8-9	Ambiente con moderati sintomi di inquinamento o di alterazione	
Classe III	6-7	Ambiente inquinato o comunque alterato	
Classe IV	4-5	Ambiente molto inquinato o comunque molto alterato	
Classe V	0-1-2-3	Ambiente fortemente inquinato o fortemente alterato	

Classi di qualità: da 1 a 5 a seconda dei valori dell'indice.

Colori: per la rappresentazione cartografica.

Immediati e intuitivi.

Analisi chimiche:

•37 campioni di acqua in campagne successive

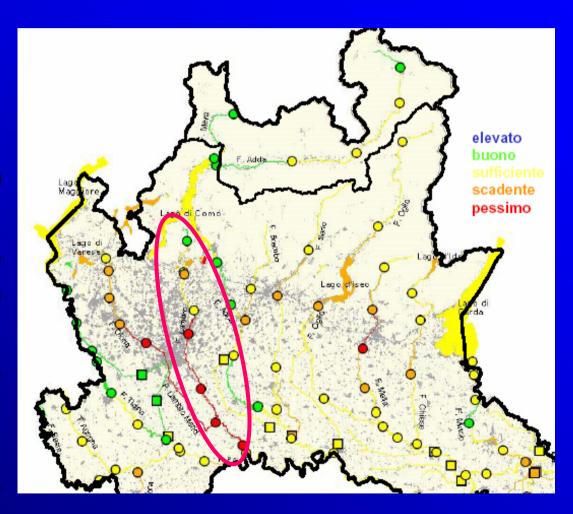
12 campioni di suolo

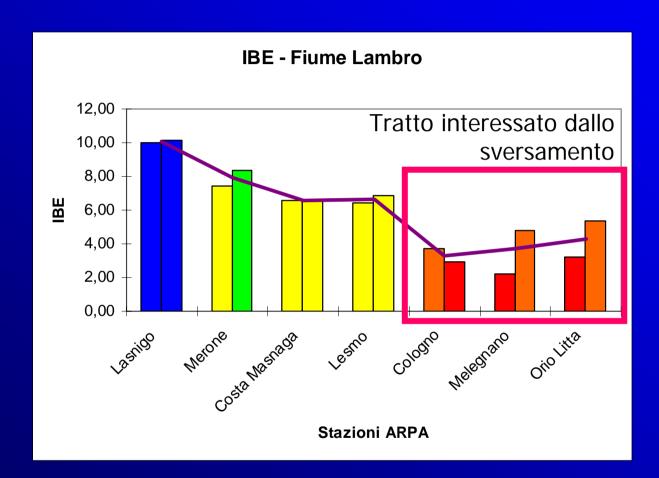
24 campioni di sedimento

Da Monza alla confluenza con il Po

Acque (μg/L)						
Stazione	Data	Idrocarb. C<10	IdrocarbC 10-C40	Idrocarb totali		
Colturano	2.3		265	265		
Peschiera Borromeo	2.3		165	165		
Milano Via priv. Taverna Milano Via Vittorini	2.3 12.3	39	70	70 39		
Milano Via priv. Taverna	12.3	53		53		
Milano Parco Lambro	12.3	74		74		
Milano, a nord della comunità Exodus	12.3	89		89		
Sesto S.Giovanni	12.3	109		109		
Cologno Monzese	12.3	103		103		

Terreni spondali	Idrocarb C<12	Idrocarb. C12-C40	PCB
Brugherio a monte depuratore	<1	<50	0,03
Brugherio	466	53.593	0,24
Cologno Monzese	<1	<50	0,13
Cologno Monzese	3	<50	0,36
Cologno Monzese	<1	456	0,09
Milano	111	14.488	0,22
Milano	5	1.072	1.692
Milano	11	1.441	0,21
Milano	148	7.291	0,009
Milano	790	271.000	0,2
Milano	14	872	0,22


Sedimenti (mg/kg s.s.)


Stazioni	Data	Idrocarb.C12- C40	Stazioni	Data	Idrocarb. C12-C40
Milano	2.03	125	Mediglia	12.03	561
Milano	2.03	93	Colturano	12.03	381
Peschiera Borromeo	2.03	1.188	Salerano L.	12.03	303
Mediglia	2.03	135	S.Angelo L.	12.03	139
Colturano	2.03	91	Borghetto L.	12.03	794
Salerano L.	4.03	80	Brugherio	17.03	2.395
S.Angelo L.	4.03	182	Cologno M.	17.03	4.215
Borghetto L.	4.03	232	Cologno M.	17.03	6.770
Chignolo Po	4.03	320	Sesto S.G.	17.03	6.800
Milano	12.03	114	Milano	17.03	7.156
Milano	12.03	396	Milano	17.03	6.926
Peschiera B.	12.03	1.813	Chignolo Po	17.03	12.400

Classificazione in base all'IBE:

Disponibili dati dal 2000 al 2008, 2010

Ecosistema fluviale estremamente degradato, soprattutto a partire dall'area metropolitana milanese

Colonna 1: dati 2000-2004

Colonna 2: dati 2005-2008

Generale degrado, in particolare dalla stazione di Cologno

Negli ultimi anni: miglioramento a Merone, a Melegnano e Orio Litta (depuratori di Milano) ma peggioramento a Cologno.

DIFFICOLTA' SERIE nel monitorare gli effetti dello sversamento di idrocarburi:

- A) La situazione era già fortemente compromessa per via dell'inquinamento delle acque, del regime idraulico "urbano" (piene distruttive) e per la carenza di habitat
 - B) L'effetto dello sversamento di derivati petroliferi è stato coperto dal "rumore di fondo" dato dallo stop all'impianto di depurazione di Monza, durato circa 5 settimane. I reflui sversati hanno creato condizioni ostili alla vita al di là della presenza di idrocarburi.

Monitoraggio (biologico) straordinario in 15 stazioni:

- ARPA (6)
- Parco Valle Lambro (5)
- UNIMIB (4)

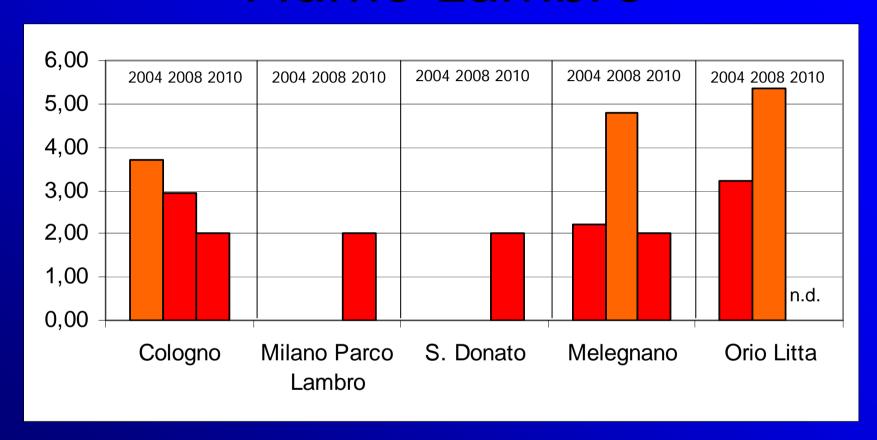
3 Stazioni "di riferimento" a monte dello sversamento

11 Stazioni a valle, da Cologno fino ad Orio Litta

Monitoraggio ordinario sul Po

Comunità di invertebrati

A monte: Efemerotteri, Tricotteri, Ditteri, Gasteropodi (IBE classe III, comunità biologiche discrete)



A valle:
Ditteri Chironomidae
Oligocheti Tubificidae
Irudinei (sanguisughe)

→ Tutti gli organismi in assoluto più tolleranti nei confronti dell'inquinamento

Gli effetti negativi nel monitoraggio postsversamento sono evidenti

Idrocarburi o refluo fognario?

Ittiofauna

Rilevamenti effettuati con elettropesca a Cologno e Milano (Parco Lambro) dal personale del Parco della Valle del Lambro

Anche nel caso dei pesci, giova ricordare che la situazione della qualità delle acque e idromorfologica era già compromessa prima dello sversamento

Comunità ittica destrutturata o assente a Cologno

Comunità ittica sufficientemente integra (più dell'atteso) al Parco Lambro

Ittiofauna

Sversamento

Solo Cavedani

Assenza di Ittiofauna

Comunità di Ciprinidi

Ittiofauna

Parco Lambro

Ciprinidi (comunità tipica della tipologia fluviale) autoctoni:

Cavedani

Scardole

Alborelle

...E diverse specie aliene (invasive)

Conclusioni

Le comunità biologiche invertebrate (indicatore normalmente più utilizzato) risultano essere fortemente compromesse a valle dello sversamento

E' stato osservato un peggioramento rispetto alle già critiche condizioni pregresse

Non è possibile, al momento, stabilire se tale peggioramento sia dovuto agli idrocarburi o al concomitante sversamento di reflui non trattati

Conclusioni

Valutazioni sul medio-lungo periodo (lo sversamento di reflui non trattati si è arrestato a fine marzo) permetteranno di discernere tra le diverse fonti di impatto, data la persistenza degli idrocarburi nel sedimento

Le comunità ittiche presentano forti alterazioni nella zona immediatamente a valle dello sversamento, ma non sembrano avere risentito particolarmente dell'evento nei tratti più a valle

Cosa attendersi

Fonti di letteratura:

1997 Poulton et al. – Gasconade River, Missouri 2001 Lytle & Peckarsky – Cayuga Inlet, New York 2006 Couceiro et al. – Amazonas, Brazil

Recupero completo in 18 – 24 mesi

Recupero in tempi più brevi nei tratti a forte corrente ("raschi") dove il sedimento è più grossolano

Recupero più lento con persistenza degli idrocarburi nel sedimento fine in tratti a lento deflusso ("pozze", "backwaters")

Nessuno dei fiumi analizzati, però, presentava una compromissione di partenza analoga a quella del Lambro.

Grazie per l'attenzione